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A theory of proofs

The proof theorist considers proofs as her study objects, and prove some
properties about them.

Q: Right, but what is a proof then?

The physicist’s A: A token of evidence!
The ordinary mathematician’s A: A convincing mathematical argument!
The logician’s A: A logically sound argument!

The proof theorist’s A:
Let’s say that proof system consists of a set of starting formal expressions together
with inference rules. Its principal aim is to find proofs of valid expressions w.r.t. a
given logic.
A proof (or derivation) in a proof system is obtained by application of the
inference rules to starting expressions, followed by further application of the
inference rules to the conclusion, and so on, recursively.
A theorem (or lemma) in such a system is the formal expression obtained after a
finite run of the procedure just sketched.
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Mathematical Paradigms
Axiomatic calculi

Starting points: Instances of axiom schemas
Rules: Two inference rules are enough

(including MP)

Identity law:
1. (A → ((A → A) → A)) → ((A → (A → A)) → (A → A)) Frege
2. A → ((A → A) → A) a fortiori
3. (A → (A → A)) → (A → A) MP : 1, 2
4. A → (A → A) a fortiori
5. A → A MP : 3, 4



Mathematical Paradigms
Natural deduction

Starting points: Assumptions ≈ Leaves of a tree
Rules: For each logical operator of the

language, we have an introduction
rule and an elimination rule ≈
Generating new tree nodes

Identity Law:

[A]1
→I:1

A → A



Mathematical Paradigms
G3-style Sequent calculi

Γ ⇒ ∆, where Γ,∆ are finite multisets of formulas.
Starting points: Initial sequents ≈ Trivial deductions

Rules: For each logical operator of the
language, we have a right rule ≈
introduction rule in ND; and a left rule
≈ (generalised) elimination rule in ND

Identity law:

A ⇒ A



Structural Analysis
Theory

By adopting Gentzen’s formalisms it is possible to perform a fine grained analysis of
the structure of proofs. In particular, in each paradigm, it is possible to prove
canonical form theorems for formal derivations:
▶ each classical or intuitionistic deduction can be effectively turned into a

normal deduction, in which no detours occur

B →I
A → B A →E

B

;

B

▶ the cut rule

Γ ⇒ ∆,A A, Γ′ ⇒ ∆′
Cut

Γ, Γ′ ⇒ ∆,∆′

can be effectively removed from every derivation in the G3-style sequent
calculi for classical and intuitionistic logics
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Structural Analysis
Applications

Normal form theorems for Gentzen’s calculi have a direct application in the field
of computerised reasoning.
In fact, theorem provers do work since they are based on logical calculi having
good structural properties:
▶ Analyticity:
↬ no guesses are required to the prover when developing a formal proof;

▶ Avoiding of backtracking:
↬ no bit of information gets lost during the procedure;

▶ Termination:
↬ no loops of the prover
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Overview

Introduction

Structural Proof Theory for Modal Logics
Verification-based epistemic states
Intuitionistic belief
Intuitionistic knowledge
Intuitionistic strong Löb logic
Interpretability logics

Automated reasoning
Gödel-Löb in HOL Light
Universal algebra in UniMath



I.
Structural Proof Theory for Modal Logics



Proof theory for modal logics

If we enrich our base syntax by modal operators, the design and the structural
analysis of calculi for modal logics may become painful.

Nevertheless, it is not impossible to design well-behaved Gentzen-style systems for
those logics

In this first part of the talk, I will propose
◦ “standard” natural deduction calculi for three intuitionistic modal logics;
◦ an “enriched” sequent calculus for a wide family of classical modal logics for

arithmetical interpretability
and study their structural properties.
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Verification-based epistemic states
Brouwer-Heyting-Kolgomorov interpretation

We adopt the view that an an intuitionistic epistemic state (belief or knowledge) is the result of verifica-
tion where a verification is evidence considered sufficiently conclusive for practical purposes.

[Artemov and Protopopescu 2016]

We can read any formula 2A as asserting that A has a proof which is not
necessarily specified in the process of verification, or more generally that it is
verified that A holds in some not specified constructive sense.

This allows to apply intuitionistic epistemic reasoning in various contexts which are
not necessarily in the standard domain of BHK; for instance:

◦ Testimony of authority;
◦ Zero-knowledge protocols;
◦ Highly probable truth;
...



Intuitionistic belief
[Artemov and Protopopescu 2016]

Axioms

1. Axioms of propositional intuitionistic logic;
2. 2(A → B) → 2A → 2B; (K-scheme)
3. A → 2A. (co-reflection)

Rules

A → B A
MP

B

A model for IEL− is a quadruple ⟨W ,≤, v , E⟩ where

▶ ⟨W ,≤, v⟩ is a standard model for intuitionistic propositional logic;

▶ E is a binary ‘knowledge’ relation on W such that:

· if xEy , then x ≤ y ; and
· if x ≤ y and yEz, then xEz;

▶ v extends to a forcing relation ⊩ such that

· x ⊩ 2A iff y ⊩ A for all y such that xEy .

Modal adequacy for IEL−

IEL− is sound and complete w.r.t. IEL− relational frames.



Natural deduction for intuitionistic belief
[PB 2021]

Let IEL− be the calculus extending NJp by the following rule:

Γ1

2A1 · · ·

Γn

2An

[A1, · · · ,An],∆

B
2I

2B

where Γ and ∆ are multisets of formulas, and A1, · · · ,An are all discharged.1

We say that B is the major premise of the rule, and each 2Ai is a minor premise,
whose corresponding discharged assumption is Ai .

1Notice that this calculus differs from the system introduced in [de Paiva and Ritter 2004] by allowing
the set ∆ of additional hypotheses in the subdeduction of B.



Natural deduction for intuitionistic belief
Typed system

As for NJp, a modal λ-calculus is then obtained by decorating IEL−-deductions
with proof names.
The λ-term corresponding to 2I is indeed ruled by the single constructor:

Γ1 ⊢ f1 : 2A1 · · · Γn ⊢ fn : 2An x1 : A1, · · · , xn : An,∆ ⊢ g : B
Γ1, · · · , Γn,∆ ⊢ (box[x1, · · · , xn].g with f1, · · · , fn) : 2B



Rewritings
ρ2

Γ

...

2⃗A

[A⃗]1, C⃗

...

B
2I:1

2B

∆

...

2⃗D

[B, D⃗]2, E⃗

...

F
2I:2

2F

ρ2
;

Γ

...

2⃗A

∆

...

2⃗D

[A⃗]1, C⃗

...

B [D⃗]1, E⃗

...

F
2I:1

2F
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Rewritings
π2

Γ1

f1

2A1 · · ·

t

Γi

fi

2Ai
E+

2Ai

Γn

fn

· · · 2An

[A1, · · · , An],∆

g

B
2I

2B

π2
;

π2
;

t

Γ1

f1

2A1 · · ·

Γi

fi

2Ai

Γn

fn

· · · 2An
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g

B
2I

2B
E+

2B

where E+ is ∨E or ⊥J .
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Normalisation

Theorem (PB 2022)
Deductions in IEL− strongly normalise w.r.t. the standard rewriting system for NJp
extended by ρ2 + π2.

Proof Sketch. We define a translation ⟨−⟩ from our modal λ-calculus to simple
type theory with products, sums, unit and empty types as follows:

⟨⊥⟩ := ⊥
⟨⊤⟩ := ⊤
⟨p⟩ := p
⟨A → B⟩ := ⟨A⟩ → ⟨B⟩
⟨A ∧ B⟩ := ⟨A⟩ ∧ ⟨B⟩
⟨A ∨ B⟩ := ⟨A⟩ ∨ ⟨B⟩
⟨2A⟩ := ⟨A⟩ ∨ q

where q is an arbitrary atom.
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Normalisation
Theorem (PB 2022)
Deductions in IEL− strongly normalise w.r.t. the standard rewriting system for NJp
extended by ρ2 + π2.

Proof Sketch.
Γ1

f1

2A1

Γ2

f2

2A2

[A1, A2],∆

g

B
2I

2B

⟨ ⟩7−→

⟨ ⟩7−→

⟨Γ2⟩

⟨f2⟩

⟨A2⟩ ∨ q

⟨Γ1⟩

⟨f1⟩

⟨A1⟩ ∨ q

[⟨A1⟩]1, [⟨A2⟩]2, ⟨∆⟩

⟨g⟩

⟨B⟩
∨I1⟨B⟩ ∨ q

[q]1
∨I2⟨B⟩ ∨ q
∨E:1

⟨B⟩ ∨ q

[q]2
∨I2⟨B⟩ ∨ q
∨E:2

⟨B⟩ ∨ q

⊠



Analyticity
Subformula property

The real importance of cut-free proofs is not the elimination of cuts per se, but rather that such proofs
obey the subformula principle.

[Smullyan 1968]

Theorem (Subformula principle, PB 2022)
Every formula B occurring in a normal IEL−-deduction f of A from assumptions Γ is a
subformula of A or of some formula in Γ.

Proof Sketch.

After [Prawitz 1971]:

⊠
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Analyticity
Further properties

Lemma
The following hold:
▶ The reflection rule is admissible in IEL−.
▶ IEL− satisfies the disjunction property.
▶ IEL− is 2-prime.
▶ If IEL− ⊢ 2(A ∨ B), then IEL− ⊢ 2A or IEL− ⊢ 2B.
▶ IEL− is consistent.
▶ IEL− is decidable.

Proof.
These properties are proven in [Artemov and Protopopescu 2016] by semantic
arguments.

Here we can rely on syntactic considerations involving (canonicity and) the
subformula property of the calculus.

⊠



Computational trinitarism

LOGIC TYPE THEORY CATEGORY THEORY

proposition type object
proof term arrow

theorem inhabitant element-arrow
conjunction product type product

true unit type terminal object
implication function type exponential
disjunction sum type (weak) coproduct

false empty type (weak) initial object



Proof theoretic semantics for IEL−
[PB 2021]

An IEL−-category is a bi-CCC C , equipped with a pointed monoidal endofunctor
2 : C → C whose point is monoidal.

⇒ algebraic semantics of deductions in IEL−

But what kind of identity of proofs does an IEL−-category capture?



Proof theoretic semantics for IEL−
Rewritings η2

Γ
...

2A [A]
2I

2A

η2
;

Γ
...

2A

Theorem (PB 2022)
IEL−-deductions strongly normalise w.r.t. the standard rewriting system for NJp
extended by ρ2 + η2.
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Categorical interpretation
[PB 2021]

Theorem (Soundness)
Let C be an IEL−-category. Then there is a canonical interpretation J−K of IEL− in C
such that
▶ a formula A is mapped to a C -object JAK;
▶ a deduction f of A1, · · · ,An ⊢IEL− B is mapped to an arrow

Jf K : JA1K × · · · × JAnK → JBK;

▶ for any two deductions f and g which are equal modulo standard rewritings
extended by ρ2 + η2, we have Jf K = JgK.

Theorem (Completeness)
If the interpretation of two IEL−-deductions is equal in all IEL−-categories, then the
two deductions are equal modulo standard+ρ2 + η2-rewritings.



Intuitionistic factivity of knowledge
[Artemov and Protopopescu 2016]

Knowledge ≃ Justified True Belief

Axioms

1. Axioms of propositional intuitionistic logic;
2. 2(A → B) → 2A → 2B; (K-scheme)
3. A → 2A. (co-reflection)
4. 2A → ¬¬A (intuitionistic factivity of knowledge)

Rules

A → B A
MP

B

A model for IEL is a model for IEL− ⟨W ,≤, v , E⟩, where the relation E satisfies the seriality
condition

· for any x ∈ W , there exists a y ∈ W such that xEy .

Modal adequacy for IEL
IEL is sound and complete w.r.t. IEL relational frames.



Natural deduction for intuitionistic knowledge
[PB 2022]

Let IEL be the system extending the natural deduction calculus IEL− by the
following elimination rule:

Γ

2A

[A],∆

⊥
2E⊥

where Γ and ∆ are multisets of formulas, and A is discharged by 2E .



Natural deduction for intuitionistic knowledge
Typed system

It is straightforward to extend the modal λ-calculus for IEL− by decorating 2E with
proof names.
The λ-term corresponding to 2E gives the eliminator for modal terms, as expected:

Γ ⊢ f : 2A x : A,∆ ⊢ g : ⊥
Γ,∆ ⊢ (unbox f with x .g) : ⊥



Rewritings
δ2

Γ1

2A1 · · ·

Γn

2An

[A1, · · · , An]
1,∆

B
2I:1

2B

[B]2,Θ

⊥
2E:2

⊥

δ2
;

δ2
;

Γn

2An

Γ2

2A2

Γ1

2A1

[A1]
1, · · · , [An]

n,∆

B, Θ

⊥
2E:1

⊥
2E:2

⊥

⊥
2E:n

⊥
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⊥
2E:2

⊥

⊥
2E:n

⊥



Normalisation
Theorem (PB 2022)
Deductions in IEL strongly normalise w.r.t. the rewriting system for NJp extended by
ρ2 + π2 + δ2.

Proof Sketch.
Tweak the translation ⟨−⟩ in the proof of strong normalisation for IEL− as follows:

⟨⊥⟩ := ⊥
⟨⊤⟩ := ⊤
⟨p⟩ := p
⟨A → B⟩ := ⟨A⟩ → ⟨B⟩
⟨A ∧ B⟩ := ⟨A⟩ ∧ ⟨B⟩
⟨A ∨ B⟩ := ⟨A⟩ ∨ ⟨B⟩
⟨2A⟩ := ⟨A⟩ ∨ ⊥

Γ

f

2A

[A],∆

g

⊥
2E

⊥

⟨ ⟩7−→

⟨Γ⟩

⟨f⟩

⟨A⟩ ∨ ⊥

[⟨A⟩]1, ⟨∆⟩

⟨g⟩

⊥ [⊥]1
∨E:1

⊥

⊠



Normalisation
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2A

[A],∆

g

⊥
2E
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⟨Γ⟩

⟨f⟩

⟨A⟩ ∨ ⊥
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⟨g⟩

⊥ [⊥]1
∨E:1

⊥

⊠



Analyticity
Subformula properties and other results

All the results about IEL− are modularly extended to IEL:

Theorem (PB 2022)
The following hold:

▶ The subformula property holds for normal IEL-deductions.

▶ In any normal IEL-deduction of A, the last rule applied is the introduction rule for the
main connective of A.

▶ The reflection rule is admissible in IEL.

▶ IEL satisfies the disjunction property.

▶ IEL is 2-prime.

▶ If IEL ⊢ 2(A ∨ B), then IEL ⊢ 2A or IEL ⊢ 2B.

▶ IEL is consistent.

▶ IEL is decidable.

▶ IEL− ⊊ IEL.

▶ For L ∈ {IEL−, IEL}, L ̸⊢ 2(A ∨ B) → 2A ∨ 2B.



Provability logics

Logics for provability ≃ modal systems capturing the abstract and structural
properties of the provability predicate used in Gödel’s incompleteness results

For classical arithmetical theories, Gödel-Löb logic does the job.

For intuitionistic arithmetical theories, the situation is less clear,2 but intuitionistic
provability logics have become relevant tools for studying fix-point and guarded
recursion operators.

2Refer however to [Mojtahedi 2022] for a promising candidate for provability in Heyting arithmetic.
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Intuitionistic strong Löb logic
[Visser and Zoethout 2018]

Axioms

1. Axioms of propositional intuitionistic logic;
2. 2(A → B) → 2A → 2B; (K-scheme)
3. A → 2A. (co-reflection)
4. 2(2A → A) → 2A (GL-scheme)

Rules

A → B A
MP

B
A model for ISL is a quadruple ⟨W ,≤, v ,R⟩ where
▶ ⟨W ,≤, v⟩ is a standard model for intuitionistic propositional logic;
▶ R is a binary relation on W such that:

· if xRy , then x ≤ y ; and
· if x ≤ y and yRz, then xRz
· R is transitive;
· R is Noetherian;

▶ v extends to a forcing relation ⊩ such that
· x ⊩ 2A iff y ⊩ A for all y such that xRy .

Modal adequacy for ISL
ISL is sound and complete w.r.t. ISL relational frames.



Natural deduction for iSL
[PB 2022]

Let ISL be the system extending the natural deduction calculus IEL− by the
following elimination rule:

Γ, [2A]⋆

A

[A]⋆,∆

C
2E:⋆

C

where Γ and ∆ are multisets of formulas, and 2E allows both multiple and vacuous
discharge.



Natural deduction for iSL
Typed system

The λ-term corresponding to 2E gives the eliminator for modal variables:

x : 2A, Γ ⊢ f : A y : A,∆ ⊢ g : C
Γ,∆ ⊢ (löb x .f with y .g) : C



Rewritings
o1
2

Γ1

2A1 · · ·

Γn

2An

[A1, · · · , An]
1,∆, [22B]2

B
2I:1

2B

[2B]2,Θ

C
2E:2

C

o1
2
;

o1
2
;

Γ1

2A1 · · ·

Γn

2An

[2B]1
2I

22B [A1, · · · , An]
2,∆

...

B [B]1
2E:1

B
2I:2

2B

C



Rewritings
o1
2

Γ1

2A1 · · ·

Γn

2An

[A1, · · · , An]
1,∆, [22B]2

B
2I:1

2B

[2B]2,Θ

C
2E:2

C

o1
2
;

o1
2
;

Γ1

2A1 · · ·

Γn

2An

[2B]1
2I

22B [A1, · · · , An]
2,∆

...

B [B]1
2E:1

B
2I:2

2B

C



Rewritings
o2
2

Γ1

2A1

[22B]2, Γi

2Ai

Γn

2An

[A1, · · · , An]
1,∆

B
2I:1

2B

[2B]2,Θ

C
2E:2

2B

o2
2
;

o2
2
;

[22B]3, Γi

2Ai

Γ1

2A1 [2Ai ]
2

Γn

2An

[A1, · · · , An]
1,∆

B
2I:1

2B
2E:2

2B

[2B]3

C
2E:3

C



Rewritings
o2
2

Γ1

2A1

[22B]2, Γi

2Ai

Γn

2An

[A1, · · · , An]
1,∆

B
2I:1

2B

[2B]2,Θ

C
2E:2

2B

o2
2
;

o2
2
;

[22B]3, Γi

2Ai

Γ1

2A1 [2Ai ]
2

Γn

2An

[A1, · · · , An]
1,∆

B
2I:1

2B
2E:2

2B

[2B]3

C
2E:3

C



Normalisation
Theorem (PB 2022)
Deductions in ISL strongly normalise w.r.t. the rewriting system for NJp extended by ρ2 + π2 + o1

2 + o2
2.

Proof Sketch.
Tweak the translation ⟨−⟩ in the proof of strong normalisation for IEL− as follows:

⟨⊥⟩ := ⊥
⟨⊤⟩ := ⊤
⟨p⟩ := p
⟨A → B⟩ := ⟨A⟩ → ⟨B⟩
⟨A ∧ B⟩ := ⟨A⟩ ∧ ⟨B⟩
⟨A ∨ B⟩ := ⟨A⟩ ∨ ⟨B⟩
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Analyticity
Further rewritings κ2
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D
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Notice that the translation used in proving strong normalisation preserves the
rewritings of κ2 too, so that ISL strongly normalises w.r.t. the extended system.
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Analyticity
Subformula property

Conjecture
Every formula B occurring in a normal – w.r.t. the standard system extended by
ρ2 + π2 + o1

2 + o2
2 + κ2 – ISL-deduction f of A from assumptions Γ is a subformula of

A or of some formula in Γ.



Interpretability logics

An interpretation of a theory T into a theory T′ is just a structure preserving
translation t such that if T ⊢ A then T ′ ⊢ t(A).
Interpretations are ubiquitous in (meta-)mathematics:

◦ Faithful embeddings;
◦ Gödel numbering;
◦ Relative consistency proofs;

...

Modal logics for interpretability are an extension of the language of provability
logic by means of a binary modal operator � capturing the relation of (relative)
interpretability between two arithmetical theories:

A � B
∗≃ IntT(⌜A∗⌝, ⌜B∗⌝)

where IntT(x , y) is the formal predicate for relative interpretability over T –
expressing the fact that the arithmetical theory T extended by A∗ interprets the
arithmetical theory T extended by B∗.
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Interpretability logics
IL

▶ Axiom schemas of CPC;
▶ schema IL2 : A � B → B � C → A � C;
▶ schema IL3 : A � C → B � C → A ∨ B � C;
▶ schema IL-Löb: A � (A ∧ (A �⊥));

▶ MP Rule A → B A
B

;

▶ �Rule A → B
A � B

.

We define

2A := ¬A �⊥, and 3A := ¬2¬A.



Interpretability logics
Extensions

Let us define as proper extensions of IL
▶ ILM := IL+ M, where

M := A � B → A ∧2C � B ∧2C

is called the Montagna schema;
▶ ILP := IL+ P, where

P := A � B → 2(A � B)

is called the persistence schema;
▶ ILW := IL+ W, where

W := A � B → A � B ∧2¬A

is called the de Jongh-Visser schema;
▶ ILKM1 := IL+ KM1, where

KM1 := A �3⊤ → ⊤� ¬A;

▶ ILM0 := IL+ M0, where

M0 := A � B → 3A ∧2C � B ∧2C;

Each of these extensions can be characterised in terms of GVS semantics by
imposing specific conditions to frames.



Interpretability logics
Verbrugge semantics

A generalised Veltman frame F consists of
▶ a finite set W ̸= ∅;
▶ a binary relation R ⊆ W × W which is irreflexive and transitive;
▶ a W -indexed set of relations Sx ⊆ R[x ]× (℘(R[x ])∖ {∅});

satisfying the following conditions:
▶ Quasi-reflexivity: if xRy then ySx{y};
▶ Definiteness: if xRyRz then ySx{z};
▶ Monotonicity: if ySxa and a ⊆ b ⊆ R[x ] then ySxb;
▶ Quasi-transitivity: if ySxa and vSxbv for all v ∈ a, then ySx(

⋃
v∈a bv).

The forcing relation is defined as for standard relational semantics, with only one
difference:

x ⊩ A � B iff for all y if xRy and y ⊩ A, then there exists an a such that ySxa and a ⊩∀ B,

where a ⊩∀ B abbreviates the expression “for any z ∈ a, z ⊩ B”.
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Design of good calculi
Formalised semantic reasoning

In recent years, internalisation techniques of semantic notions in sequent calculi
marked an event in proof theory for non-classical logics.

The starting point of that perspective is still the basic G3-paradigm, but the
formalism of sequent systems is extended either by
▶ enriching the language of the calculi themselves (explicit internalisation);or by
▶ enriching the structure of sequents (implicit internalisation).

For interpretability logics, we adopted an explicit internalisation methodology, and
developed labelled sequent calculi for IL and its extensions.
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G3IL⋆
Basic calculus



G3IL⋆
Rules for extensions



G3IL⋆
Structural completeness

Theorem (PB 2022)
Any calculus in the family G3IL⋆ satisfies the following properties:
▶ Generalised initial sequents are derivable;
▶ Substitution rules for worlds and neighbourhoods are hp-admissible;
▶ Weakening rules are hp-admissible;
▶ All the rules are invertible;
▶ Contraction rules are admissible;
▶ Cut-elimination holds.

Some care is needed for proving cut elimination:
We had to generalise the strategy by [Negri 2005], and proceed by ternary
transfinite induction – main induction on the size of the cut formula, secondary
induction on the range of the cut label and tertiary induction on the cut height.
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G3IL⋆
Semantic completeness

Each calculus in the family of G3IL⋆ is sound and complete w.r.t. the appropriate
class of Verbrugge frames: This is shown by interpreting derivations in frames –
soundness – and, indirectly, by proving the interpretability principles of each
axiomatic calculus – completeness.

After settling

Conjecture
There exists a strategy making proof search in G3KIL⋆ for a sequent of the form
⇒ x : A always terminate in a finite number of steps. Moreover, from a failed proof
search, it is possible to extract a countermodel to A belonging to appropriate
class of generalised Veltman frames.

a more direct proof of completeness might be given, by the Tait-Schutte-Takeuti
methodology.
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II.
Automated Reasoning



Formalisation and theorem provers

My intellect never quite recovered from the strain of writing [Principia Mathe-
matica]. I have been ever since definitely less capable of dealing with difficult
abstractions than I was before.

[Russell 1971]

Nowadays, contemporary proof assistants are capable to help the mathematician in
formalising substantial bodies of advanced mathematics, and symbolism and formal
reasoning do not drive anyone mad – in principle.

In this second part of the talk, I will propose two experiments in automated reasoning,
namely

◦ an implementation in HOL Light of a theorem prover and countermodel constructor for
provability logic;

◦ a formalisation in UniMath of the basics of universal algebra, with an eye at automated
computations

and show how the current versions of that code work.
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HOL Light
A brief glance

◦ Clean logical foundations ≈ Principia Mathematica

◦ LCF-style proof checker based on polymorphic
simple type theory ≈ small class of primitive inference
rules for creating theorems + derived inference rules
to be programmed on top

⇒ 10 primitive rules
⇒ 2 conservative extension principles

⇒ Axioms of choice, extensionality, and infinity

◦ Written as an OCaml program ≈ three datatypes for
the logic: hol_type, term, and thm

◦ Goal-directed proof development ≈ tactic(al)s +
automated methods (in the appropriate domains)

Originally designed and currently maintained by John Harrison, HOL Light is a flexible
theorem prover used both in academic and industrial research: formalised incompleteness
theorems, topology, floating point algorithms, modules for FlySpeck project



HOL Light
A brief glance

◦ Clean logical foundations ≈ Principia Mathematica

◦ LCF-style proof checker based on polymorphic
simple type theory ≈ small class of primitive inference
rules for creating theorems + derived inference rules
to be programmed on top

⇒ 10 primitive rules
⇒ 2 conservative extension principles

⇒ Axioms of choice, extensionality, and infinity

◦ Written as an OCaml program ≈ three datatypes for
the logic: hol_type, term, and thm

◦ Goal-directed proof development ≈ tactic(al)s +
automated methods (in the appropriate domains)

Originally designed and currently maintained by John Harrison, HOL Light is a flexible
theorem prover used both in academic and industrial research: formalised incompleteness
theorems, topology, floating point algorithms, modules for FlySpeck project



HOL Light
A brief glance

◦ Clean logical foundations ≈ Principia Mathematica

◦ LCF-style proof checker based on polymorphic
simple type theory ≈ small class of primitive inference
rules for creating theorems + derived inference rules
to be programmed on top

⇒ 10 primitive rules
⇒ 2 conservative extension principles

⇒ Axioms of choice, extensionality, and infinity

◦ Written as an OCaml program ≈ three datatypes for
the logic: hol_type, term, and thm

◦ Goal-directed proof development ≈ tactic(al)s +
automated methods (in the appropriate domains)

Originally designed and currently maintained by John Harrison, HOL Light is a flexible
theorem prover used both in academic and industrial research: formalised incompleteness
theorems, topology, floating point algorithms, modules for FlySpeck project



HOL Light
A brief glance

◦ Clean logical foundations ≈ Principia Mathematica

◦ LCF-style proof checker based on polymorphic
simple type theory ≈ small class of primitive inference
rules for creating theorems + derived inference rules
to be programmed on top

⇒ 10 primitive rules
⇒ 2 conservative extension principles

⇒ Axioms of choice, extensionality, and infinity

◦ Written as an OCaml program ≈ three datatypes for
the logic: hol_type, term, and thm

◦ Goal-directed proof development ≈ tactic(al)s +
automated methods (in the appropriate domains)

Originally designed and currently maintained by John Harrison, HOL Light is a flexible
theorem prover used both in academic and industrial research: formalised incompleteness
theorems, topology, floating point algorithms, modules for FlySpeck project



HOL Light
A brief glance

◦ Clean logical foundations ≈ Principia Mathematica

◦ LCF-style proof checker based on polymorphic
simple type theory ≈ small class of primitive inference
rules for creating theorems + derived inference rules
to be programmed on top

⇒ 10 primitive rules
⇒ 2 conservative extension principles

⇒ Axioms of choice, extensionality, and infinity

◦ Written as an OCaml program ≈ three datatypes for
the logic: hol_type, term, and thm

◦ Goal-directed proof development ≈ tactic(al)s +
automated methods (in the appropriate domains)

Originally designed and currently maintained by John Harrison, HOL Light is a flexible
theorem prover used both in academic and industrial research: formalised incompleteness
theorems, topology, floating point algorithms, modules for FlySpeck project



Gödel-Löb logic
Axiomatic system

The abstract properties of the provability predicate of any “reasonable”
arithmetical theory over a classical base are captured by the system GL, that is
made of:
▶ Axioms of classical propositional logic
▶ Axiom K : 2(A → B) → 2A → 2B
▶ Axiom GL : 2(2A → A) → 2A

▶ MP Rule A → B A
B

▶ Nec Rule A
2A



Gödel-Löb logic
Relational semantics

Theorem (Modal adequacy)

GL ⊢ A iff TFT ⊨ A

where TFT is the class of relational frames F = ⟨W ,R⟩ where W is finite, R ⊆ W × W is
transitive and ⟨W ,R⟩ defines a tree.

In [Maggesi and PB 2021] we have presented a formalisation in HOL Light of that
theorem, and adopted an hybrid proof strategy which considers the difficulties
determined by the non-compactness of GL, without incurring in syntactic
subtleties sketched in [Boolos 1995].

But we wanted something more. . .



Our theorem prover
G3KGL

Initial sequents:

x : p, Γ ⇒ ∆, x : p

Propositional rules:

L⊥
x : ⊥, Γ ⇒ ∆

x : A, x : B, Γ ⇒ ∆
L∧

x : A ∧ B, Γ ⇒ ∆

Γ ⇒ ∆, x : A Γ ⇒ ∆, x : B
R∧

Γ ⇒ ∆, x : A ∧ B

x : A, Γ ⇒ ∆ x : B, Γ ⇒ ∆
L∨

x : A ∨ B, Γ ⇒ ∆

Γ ⇒ ∆, x : A, x : B
R∨

Γ ⇒ ∆, x : A ∨ B

Γ ⇒ ∆, x : A
L¬

x : ¬A, Γ ⇒ ∆

x : A, Γ ⇒ ∆
R¬

Γ ⇒ ∆, x : ¬A

Γ ⇒ ∆, x : A x : B, Γ ⇒ ∆
L→

x : A → B, Γ ⇒ ∆

x : A, Γ ⇒ ∆, x : B
R→

Γ ⇒ ∆, x : A → B

Modal rules:

y : A, xRy, x : 2A, Γ ⇒ ∆
L2

xRy, x : 2A, Γ ⇒ ∆

xRy, y : 2A, Γ ⇒ ∆, y : A
R2Löb

(y!)Γ ⇒ ∆, x : 2A

Semantic rules:

Irref
xRx, Γ ⇒ ∆

xRz, xRy, yRz, Γ ⇒ ∆
Trans

xRy, yRz, Γ ⇒ ∆



Our theorem prover
Implementing semantic reasoning

It is not hard to see how to use both our formalisation of modal completeness and the
already known proof theory for G3KGL to the aim of implementing a decision algorithm in
HOL Light for GL: Our predicate holds (W,R) V A x corresponds exactly to the labelled
formula x : A.
Thus we have three different ways of expressing the fact that a world x forces A in a given
model ⟨W ,R, v⟩:

SEMANTIC NOTATION x ⊩ A
LABELLED SEQUENT CALCULUS NOTATION x : A
HOL LIGHT NOTATION holds (W,R) V A x
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Our theorem prover
Design of the proof search

Our tactic GL_TAC works as expected:

1. Given a formula A of L, OCaml let-terms are rewritten together with definable modal operators, and the goal
is set to |-- A;

2. A model ⟨W , R, v⟩ and a world w ∈ W – where W sits on the type num – are introduced. The main goal is now
holds (W,R) V A w;

3. Meta-hypotheses trans boxr1 boxr2 boxl1 boxl2 w are introduced to be able to handle modal and
relational rules;

4. All possible propositional rules are applied after unfolding the predicate holds. This assures that, at each step of
the proof search, the goal term is a finite conjunction of disjunctions of positive and negative
holds-propositions. As usual, priority is given to non-branching rules, i.e. to those that do not generate subgoals.
Furthermore, the hypothesis list is checked, and trans is applied whenever possible; the same holds for L2,
which is applied to any appropriate hypothesis after the tactic triggering trans. Each new goal term is
reordered by SORT_BOX_TAC, which always precedes the implementation of R2Löb.

The procedure is repeated starting from step 2. The tactic ruling it is

FIRST o map CHANGED_TAC,

which triggers the correct non-failing tactic.
By calling ASM_REWRITE_TAC, an additional condition states that the current branch is closed, i.e. an initial sequent
has been reached, or the sequent currently analysed has a labelled formula x : ⊥ in the antecedent.

Moreover, if the proof search fails, a countermodel to the input formula is stored in the HOL Light proof development
process, and the computer returns all the necessary information to the user.
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Our theorem prover
At work

Our code is integrated in the official HOL Light distribution
https://github.com/jrh13/hol-light

and is surveyed in [Maggesi and PB 2022] – under review.

Let’s have a run on it now

https://github.com/jrh13/hol-light
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UniMath
A brief glance

UniMath origin dates back to 2014 when three COQ libraries were combined:
◦ Foundations (Voevodsky, 2010)
◦ RezkCompletion (Ahrens, Kapulkin, Shulman, 2013)
◦ Ktheory (Grayson, 2013)

Martin-Löf Type Theory / subsystem of COQ:
▶ no record types
▶ no inductive types
▶ no match construct

Extended by:
▶ Univalence (and Function Extensionality) Axiom(s)
▶ Propositional Resizing
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Martin-Löf Type Theory / subsystem of COQ:
▶ no record types
▶ no inductive types
▶ no match construct

Extended by:
▶ Univalence (and Function Extensionality) Axiom(s)
▶ Propositional Resizing



Universal algebra in UniMath
[Amato, Maggesi, PB 2021], [Amato, Maggesi, Parton, PB 2020]

We introduced the basic notions for developing investigations in universal algebra from the univalent perspective:
▶ multi-sorted signatures
▶ algebras and their univalent category
▶ free algebras
▶ theories and their univalent category
▶ terms

⇝ no inductive types in UniMath

Sketch of our implementation

2 t ∈ T (sigma, V ) ⇝ list of function symbols (and variables)

2 Lists are executed by a stack machine (status monad on natural numbers)

3 Status n ⇝ remaining elements after execution
3 Status error ⇝ stack underflow

2 At the end of execution, a w.f. term always has status 1

2 Induction principle in order to reason on terms

Theorem term_ind (P: term sigma � UU)
(R: term_ind_HP P) (t: term sigma): P t.

R states that for any symbol nm of σ, if P holds for any elements of the list corresponding to nm, then P holds for
the whole term.

⇝ UniMath is able to use that to perform computations autonomously

⇝ both proofs and computations concerning terms in UniMath environment↬ Poincaré Principle
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Universal algebra in UniMath
At work

Our code is integrated in the official UniMath repository at
https://github.com/UniMath/UniMath/tree/master/UniMath/Algebra/Universal

and it is under further development at
https://github.com/amato-gianluca/UniMath/tree/wtypes/UniMath

Let’s see how it works by now

https://github.com/UniMath/UniMath/tree/master/UniMath/Algebra/Universal
https://github.com/amato-gianluca/UniMath/tree/wtypes/UniMath
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Many thanks
for your attention
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