
Introduction Technical preliminaries Proof system for CCS

Towards a proof analysis of processes

Cosimo Perini Brogi
IMT School for Advanced Studies Lucca

IT Matters Final Workshop
July 11-12, 2023

Lucca

Introduction Technical preliminaries Proof system for CCS

General framework

Main goal

Apply proof-theoretic tools and techniques to formal verification of concurrent programs

How to reach it
• Exploit the interplay between (non-classical) logics, process algebras/calculi and labelled

transition systems

• From the particular to the general, starting with experiments on some standard and
well-understood process calculi

Introduction Technical preliminaries Proof system for CCS

General framework

Main goal

Apply proof-theoretic tools and techniques to formal verification of concurrent programs

How to reach it
• Exploit the interplay between (non-classical) logics, process algebras/calculi and labelled

transition systems

• From the particular to the general, starting with experiments on some standard and
well-understood process calculi

Introduction Technical preliminaries Proof system for CCS

Desiderata

• If the verification goal is complex, break it into subgoals, according to its syntactic
structure
⇒ basic requirement for automation of proof search algorithms (Troelstra and
Schwichtenberg 2000)

• If the process under investigation is complex, prove that it does satisfy a certain property
by proving that its subprocesses do satisfy some properties that are sufficient to establish
the original property
⇒ verification of modular processes should be modular (Stirling 1987)

Introduction Technical preliminaries Proof system for CCS

Outline

Introduction

Technical preliminaries

Proof system for CCS

Introduction Technical preliminaries Proof system for CCS

Concurrent processes
Example from informatics

A simple example of two processes modifying a linked list at the same time causing a conflict (WikiMedia, CC-BY-SA-3.0)

Introduction Technical preliminaries Proof system for CCS

Concurrent processes
Example from biology

Starlings flocks, murmuration (WikiMedia, CC-BY-SA-2.0)

Introduction Technical preliminaries Proof system for CCS

Concurrent processes
Example from epic (?!)

Orlando furioso, “il poema dal movimento errante, a zig zag” (I. Calvino)

Introduction Technical preliminaries Proof system for CCS

Calculus of communicating systems
Key insight

Hoare’s and Milner’s proposal

Process calculi provide a syntactic characterisation of concurrent programs that is based on
process operators building new process behaviours from simpler ones

To describe processes, focus on interactions!

Introduction Technical preliminaries Proof system for CCS

Calculus of communicating systems
Syntax-driven SOS

No rules for 0
Act

µ.p
µ→ p

p
µ→ q p , k

Def
k

µ→ q

p
µ→ q

Ren

p[f]
f (µ)→ q[f]

p
µ→ q

Res µ,µ/∈L

p\L
µ→ q\L

p
µ→ p′

Sum1

p + q
µ→ p′

q
µ→ q′

Sum2

p + q
µ→ q′

p
µ→ p′

Com1

p|q µ→ p′|q
q

µ→ q′
Com2

p|q µ→ p|q′
p

λ→ p′ q
λ→ q′

Com3

p|q τ→ p′|q′

Introduction Technical preliminaries Proof system for CCS

Behavioural equivalence via structural semantics
Using the structural semantics, labelled transition systems are rigorously associated to
concurrent processes:
Just consider T := 〈P,Aτ ,→〉, where → applied to µ is the least relation on P generated by
the rules of the structural semantics.

When two CCS are observationally identifiable?

Two states are bisimilar (and we write p ' q) when there exists a bisimulation R such that
pRq.

Quotienting LTS over ' provides a semantics of CCS that focuses of (some) external
behaviour of process, abstracting from their specific identity.

Introduction Technical preliminaries Proof system for CCS

Behavioural equivalence via logic

Definition (Hennessy-Milner logic)

Formulas of HM are defined by the following grammar:

A ∈ FrmHM ::= > | ¬A | A ∧ B | 〈µ〉A,

where µ ∈ Aτ , ¬ and ∧ denote classical negation and conjunction, resp.

Now, given the LTS 〈P,Aτ ,→〉, we can define a standard notion of local forcing as follows:

• p > for any p ∈ P;

• p ¬A iff p 6 A;

• p A ∧ B iff p A and p B;

• p 〈µ〉A iff there exists a q ∈ P such that p
µ→ q and q A.

Introduction Technical preliminaries Proof system for CCS

Behavioural equivalence via logic

Theorem (Hennessy and Milner 1985)

Let’s say that a state p of an LTS T is finitely branching if the set of states that are reachable
in T from p is finite.
Then, given two finitely branching states p, q

p ' q iff, for any A ∈ FrmHM , p A iff q A.a

aThe finite branching condition can be discarded if infinite conjunctions are allowed in the basic language.

Introduction Technical preliminaries Proof system for CCS

Bits of proof theory
Sequents

A sequent is an expression Γ ` ∆, where Γ and ∆ are finite multisets of formulas in a given
language.
A sequent A1, · · · ,An ` B1, · · · ,Bm can be interpreted as

n∧
i=1

Ai →
m∨
j=1

Bj ,

where
∧

∅ = > and
∨
∅ = ⊥.

A sequent calculus is a set of rules with shape

S1 · · · Sn
RuleS0

for certain sequents S0, · · · ,Sn.

Introduction Technical preliminaries Proof system for CCS

Bits of proof theory
G3-style sequent calculi

For classical propositional logic, we have the following rules:

p, Γ⇒ ∆, p
L⊥

⊥, Γ⇒ ∆

A,B, Γ⇒ ∆
L∧

A ∧ B, Γ⇒ ∆

Γ⇒ ∆,A Γ⇒ ∆,B
R∧

Γ⇒ ∆,A ∧ B

A, Γ⇒ ∆ B, Γ⇒ ∆
L∨

A ∨ B, Γ⇒ ∆

Γ⇒ ∆,A,B
R∨

Γ⇒ ∆,A ∨ B

Γ⇒ ∆,A
L¬

¬A, Γ⇒ ∆

A, Γ⇒ ∆
R¬

Γ⇒ ∆,¬A

Γ⇒ ∆,A B, Γ⇒ ∆
L→

A→ B, Γ⇒ ∆

A, Γ⇒ ∆,B
R→

Γ⇒ ∆,A→ B

Introduction Technical preliminaries Proof system for CCS

Bits of proof theory
Cut elimination

The rules for classical propositional logic are very well-designed, but in order to capture the
standard mathematical reasoning we want the following rule to be admissible:

Γ ` ∆,A A, Γ′ ` ∆′
Cut

Γ, Γ′ ` ∆,∆′

A key result in any structural analysis of a logic is the following canonical form theorem:

Theorem (Hauptsatz, Gentzen 1934)

Any derivation of a sequent in the calculus for classical (propositional) logic can be effectively
turned into a derivation that does not use the cut rule.

Introduction Technical preliminaries Proof system for CCS

Bits of proof theory
Applications

Gentzen’s proof has a direct application in the field of computerised reasoning.
In fact, theorem provers do work since they are based on logical calculi having good structural
properties:

• Analyticity: Each formula occurring in a cut-free derivation is a subformula of the
formulas occurring lower in the derivation branch
no guesses are required to the prover when developing a formal proof;

• Avoiding of backtracking: For each rule of a G3-system, derivability of the conclusion
implies the derivability of the premise(s)
no backtracking during the proof search and no bit of information gets lost during the
procedure;

• Termination: Each proof search must come to an end (in the propositional setting),
because of the subformula property, or a specific proof search algorithm
no loops of the prover

Introduction Technical preliminaries Proof system for CCS

Bits of proof theory
Applications

Gentzen’s proof has a direct application in the field of computerised reasoning.
In fact, theorem provers do work since they are based on logical calculi having good structural
properties:

• Analyticity: Each formula occurring in a cut-free derivation is a subformula of the
formulas occurring lower in the derivation branch
no guesses are required to the prover when developing a formal proof;

• Avoiding of backtracking: For each rule of a G3-system, derivability of the conclusion
implies the derivability of the premise(s)
no backtracking during the proof search and no bit of information gets lost during the
procedure;

• Termination: Each proof search must come to an end (in the propositional setting),
because of the subformula property, or a specific proof search algorithm
no loops of the prover

Introduction Technical preliminaries Proof system for CCS

Bits of proof theory
Applications

Gentzen’s proof has a direct application in the field of computerised reasoning.
In fact, theorem provers do work since they are based on logical calculi having good structural
properties:

• Analyticity: Each formula occurring in a cut-free derivation is a subformula of the
formulas occurring lower in the derivation branch
no guesses are required to the prover when developing a formal proof;

• Avoiding of backtracking: For each rule of a G3-system, derivability of the conclusion
implies the derivability of the premise(s)
no backtracking during the proof search and no bit of information gets lost during the
procedure;

• Termination: Each proof search must come to an end (in the propositional setting),
because of the subformula property, or a specific proof search algorithm
no loops of the prover

Introduction Technical preliminaries Proof system for CCS

Principled prototype
Basic language

Our proof system G3CCS is based on the explicit internalisation in the sequents of the
semantics for CCS.

We work with labelled formulas with shape:

p
µ→ q | p , k | p ≡ q | p : A

Sequents are now expressions Γ ` ∆ where Γ,∆ are finite multisets of labelled formulas, and in
∆ only formulas with shape p : A may occur.

Introduction Technical preliminaries Proof system for CCS

Principled prototype
Basic language

Our proof system G3CCS is based on the explicit internalisation in the sequents of the
semantics for CCS.
We work with labelled formulas with shape:

p
µ→ q | p , k | p ≡ q | p : A

Sequents are now expressions Γ ` ∆ where Γ,∆ are finite multisets of labelled formulas, and in
∆ only formulas with shape p : A may occur.

Introduction Technical preliminaries Proof system for CCS

Principled prototype
Basic language

Our proof system G3CCS is based on the explicit internalisation in the sequents of the
semantics for CCS.
We work with labelled formulas with shape:

p
µ→ q | p , k | p ≡ q | p : A

Sequents are now expressions Γ ` ∆ where Γ,∆ are finite multisets of labelled formulas, and in
∆ only formulas with shape p : A may occur.

Introduction Technical preliminaries Proof system for CCS

Principled prototype
Logical rules

R>
Γ ` ∆, p :>

Γ ` ∆, p :A
L¬

p :¬A, Γ ` ∆

p :A, Γ ` ∆
R¬

Γ ` ∆, p :¬A

p :A, p :B, Γ ` ∆
L∧

p :A ∧ B, Γ ` ∆

Γ ` ∆, p :A Γ ` ∆, p :B
R∧

Γ ` ∆, p :A ∧ B

p
µ→ y , y : A, Γ ` ∆

L3(!y)
p :〈µ〉A, Γ ` ∆

p
µ→ q, Γ ` ∆, p :〈µ〉A, q :A

R3

p
µ→ q, Γ ` ∆, p :〈µ〉A

Introduction Technical preliminaries Proof system for CCS

Principled prototype
Compositional rules

For each process operator, we need to introduce in G3CCS some rules characterising it in terms
of the SOS rules for itself.
Notice first that each of these rules can be translated into geometric formulas.1

After (Negri and von Plato 2011)

Use geometric sequent rules. . .

1A geometric formula is a formula in the language of first-order classical logic of shape A → B, where A,B
do not contain ∀ and →.

Introduction Technical preliminaries Proof system for CCS

Worked-out examples
Choice, top-down

p
µ→ p′

Sum1

p + q
µ→ p′
 (p

µ→ p′)→ (p + q
µ→ p′)

 p + q
µ→ p′, p

µ→ p′, Γ ` ∆
Sumdirect1

p
µ→ p′, Γ ` ∆

Introduction Technical preliminaries Proof system for CCS

Worked-out examples
Choice, bottom-up

p
µ→ p′

Sum1

p + q
µ→ p′

+
q

µ→ q′
Sum2

p + q
µ→ q′
 (p + q

µ→ x)→ (p
µ→ x) ∨ (q

µ→ x)

 p
µ→ x , p + q

µ→ x , Γ ` ∆ q
µ→ x , p + q

µ→ x , Γ ` ∆
Sumvar

p + q
µ→ x , Γ ` ∆

Introduction Technical preliminaries Proof system for CCS

Worked-out examples
Communication, top-down

p
µ→ p′

Com1

p|q µ→ p′|q
 (p

µ→ p′)→ (p|q µ→ p′|q)

 p|q µ→ p′|q, p µ→ p′, Γ ` ∆
Comdirect1

p
µ→ p′, Γ ` ∆

Introduction Technical preliminaries Proof system for CCS

Worked-out examples
Communication, top-down

p
λ→ p′ q

λ→ q′
Com3

p|q τ→ p′|q′
 (p

λ→ p′) ∧ (q
λ→ q′)→ (p|q τ→ p′|q′)

 p|q τ→ p′|q′, p λ→ p′, q
λ→ q′, Γ ` ∆

Comdirect3

p
λ→ p′, q

λ→ q′, Γ ` ∆

Introduction Technical preliminaries Proof system for CCS

Worked-out examples
Communication, bottom-up

Com1 + Com2 + Com3 (p|q µ→ z)→ (∃x , p µ→ x ∧ z ≡ x |q) ∨ (∃y , q µ→ y ∧ z ≡ p|y)

&
(p|q τ→ z) → (∃x , p τ→ x ∧ z ≡ x |q) ∨ (∃y , q τ→ y ∧ z ≡ p|y)

∨(∃x∃y , p λ→ x ∧ q
λ→ y ∧ z ≡ x |y)

 x |q ≡ z , p
µ→ x , p|q µ→ z , Γ ` ∆ p|y ≡ z , q

µ→ y , p|q µ→ z , Γ ` ∆
Comvar1(!x,!y)

p|q µ→ z , Γ ` ∆

&
x|q ≡ z, p

τ→ x, p|q τ→ z, Γ ` ∆ p|y ≡ z, q
τ→ y, p|q τ→ z, Γ ` ∆ x|y ≡ z, p

λ→ x, q
λ→ y, p|q τ→ z, Γ ` ∆

Comvar2(!x,!y)
p|q τ→ z, Γ ` ∆

Introduction Technical preliminaries Proof system for CCS

Main results

Theorem (Structural completeness)

G3CCS satisfies the following properties:

• Generalised initial sequents are derivable;

• Substitution rule for states over variables are height-preserving admissible;

• Weakening rules are height preserving admissible;

• All the rules are height-preserving invertible;

• Contraction rules are height-preserving admissible;

• The cut rule can be effectively eliminated.

If we have a derivation of a parametrised property x1 : A1, · · · , xn : An ` op(x1, · · · , xn) : B
(where op is process operator) and derivations of ` p1 : A1, · · · ,` pn : An, then we can apply
substitution and cut to obtain a derivation of ` op(p1, · · · , pn) : B
⇒ Compositional verification!

Introduction Technical preliminaries Proof system for CCS

Main results

Theorem (Semantic completeness)

G3CCS satisfies the following properties:

Soundness: If the sequent Γ ` ∆ is derivable, then Γ � ∆;

Completeness: If the sequent Γ ` ∆ is not derivable, then it is possible to extract from the
failed proof search an LTS-countermodel to Γ ` ∆ (complications to be checked)

Introduction Technical preliminaries Proof system for CCS

Put in perspective

• It is possible to use the most important tools and techniques of proof theory in formal
methods for concurrent processes described by CCS (and other process calculi)

• Contemporary research in internalisation of mathematical structures in sequent calculi
finds a natural application in a principled verification (no black boxes) of reactive systems

• The theory needs some improvement (termination of backward proof search algorithm?),
with the aim of implementing this kind of calculi (automation in Prolog?)

Many thanks for listening!

Introduction Technical preliminaries Proof system for CCS

Put in perspective

• It is possible to use the most important tools and techniques of proof theory in formal
methods for concurrent processes described by CCS (and other process calculi)

• Contemporary research in internalisation of mathematical structures in sequent calculi
finds a natural application in a principled verification (no black boxes) of reactive systems

• The theory needs some improvement (termination of backward proof search algorithm?),
with the aim of implementing this kind of calculi (automation in Prolog?)

Many thanks for listening!

Introduction Technical preliminaries Proof system for CCS

References

� De Nicola, R. (2014). A gentle introduction to Process Algebras. Notes, 7.

� Hennessy, M., Milner, R. (1985). Algebraic laws for nondeterminism and concurrency.
Journal of the ACM (JACM), 32(1), 137-161.

� Negri, S., von Plato, J. (2011). Proof analysis: a contribution to Hilbert’s last problem.
Cambridge University Press.

� Stirling, C. (1987). Modal logics for communicating systems. Theoretical Computer
Science, 49(2-3), 311-347.

� Troelstra, A. S., Schwichtenberg, H. (2000). Basic proof theory (No. 43). Cambridge
University Press.

	Introduction
	Technical preliminaries
	Proof system for CCS

